

# LunaNet Perspectives on Reference Frames

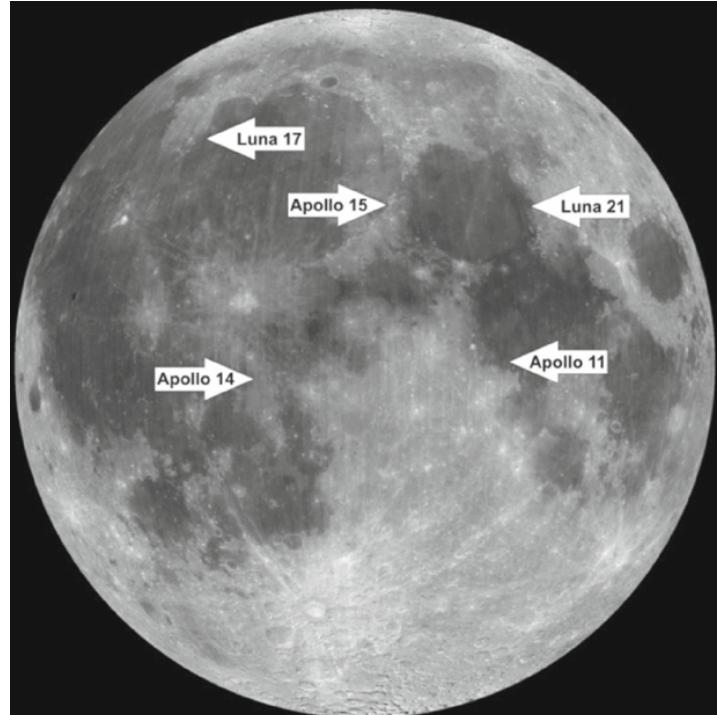
12 February 2025 @Workshop on Cislunar Positioning, Navigation, and Timing (PNT), Vienna

## Contributors:

Suzuna Okamoto, JAXA    Masaya Murata, JAXA

Juan Crenshaw, NASA    Cheryl Gramling, NASA

Sara Bruni, ESA    Floor Melman, ESA    Erik Schoenemann, ESA    Cosimo Stallo, ESA    Richard Swinden, ESA


## Overview of LunaNet Perspectives; Time & Reference Systems Application

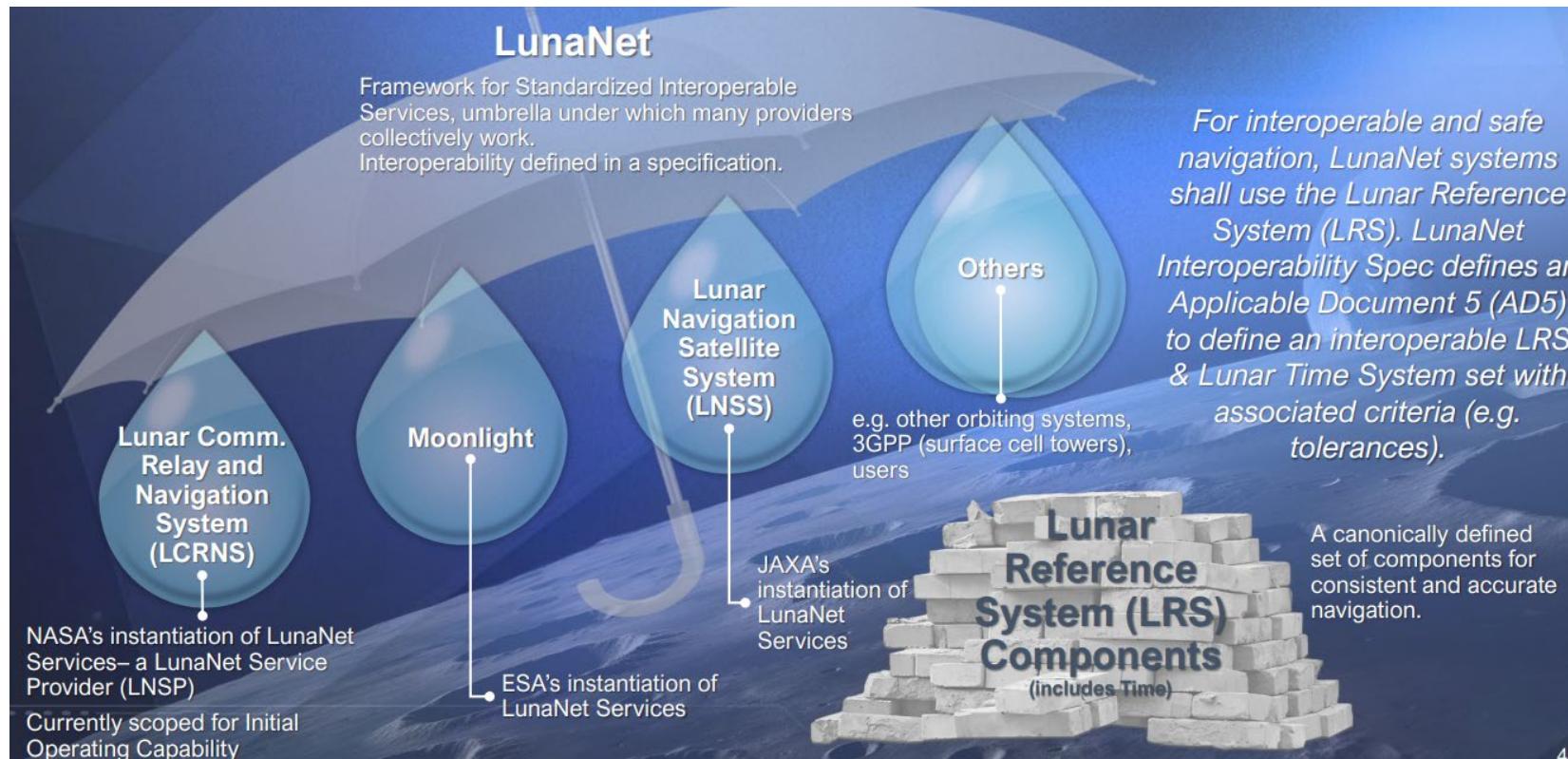
- LunaNet Perspectives on Reference Frames (given by JAXA)
- Towards an International Lunar Time Reference – LunaNet Reference Time (given by ESA)
- LunaNet Perspectives – How the International Standards Community Can Help (given by NASA)

# Importance of Reference Frame

To ensure PNT on the Moon, **developing standards** is essential. Currently, several reference frames are considered for the Moon, and 2 commonly used systems, which is **PA (Principal Axis)** and **ME (Mean Earth)**, have a difference of about 860m.<sup>[3]</sup>

Location of the measurement devices on each mission [1]




Coordinate positions for each location in PA and ME [2]

| Retroreflectors | DE440 PA Frame (m)                        | DE421 MER Frame (m)                       |
|-----------------|-------------------------------------------|-------------------------------------------|
| Apollo 11       | 1591967.049<br>690698.573<br>21004.461    | 1591747.649<br>691222.200<br>20398.110    |
| Apollo 14       | 1652689.369<br>-520998.431<br>-109729.869 | 1652818.682<br>-520454.587<br>-110361.165 |
| Apollo 15       | 1554678.104<br>98094.498<br>765005.863    | 1554937.504<br>98604.886<br>764412.810    |
| Lunokhod 2      | 1339363.598<br>801870.995<br>756359.260   | 1339388.213<br>802310.527<br>755849.393   |
| Lunokhod 1      | 1114291.452<br>-781299.273<br>1076059.049 | 1114958.865<br>-780934.127<br>1075632.692 |

# LunaNet Perspectives on Reference Frames

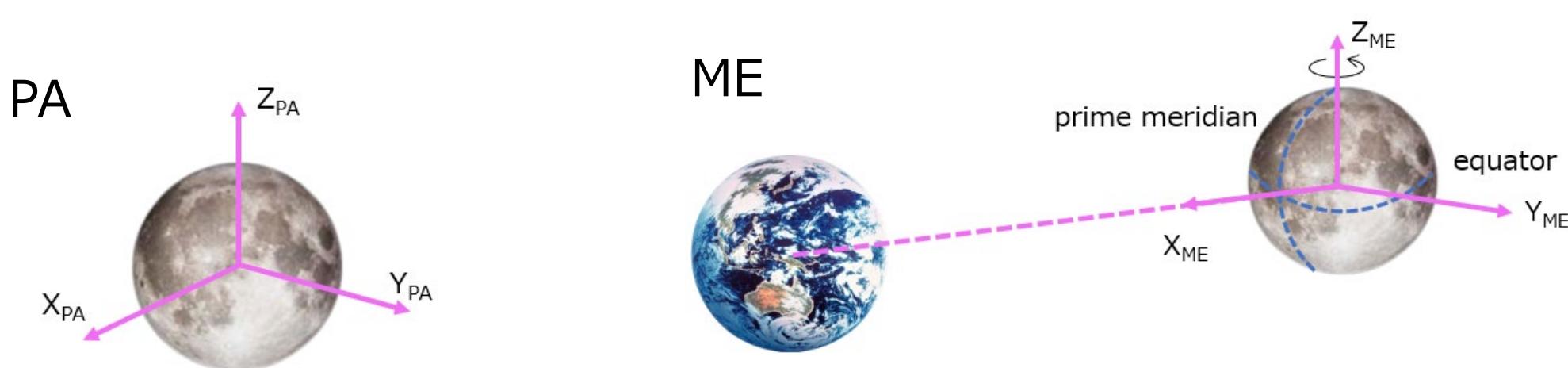
LunaNet is working on a standardization document called LNIS (LunaNet Interoperability Specification).

The **AD5 of LNIS** will describe the **interoperability of lunar reference frames** that can be used in LunaNet.



# Reference Systems and Reference Frames; Long term

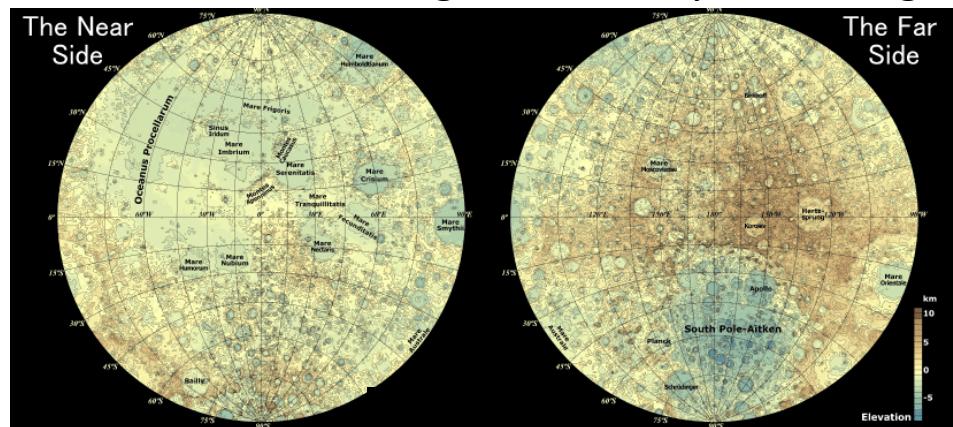
The long-term perspective of LunaNet is to adopt reference systems/frames generated with the contribution of the whole scientific community under the auspices of official international organizations.


|           | <b>Inertial System</b>                       | <b>Fixed System</b>                               | <b>Reference Frame</b>                                                       |
|-----------|----------------------------------------------|---------------------------------------------------|------------------------------------------------------------------------------|
| The Earth | GCRS (Geocentric Celestial Reference System) | ITRS (International Terrestrial Reference System) | ITRF (International Terrestrial Reference Frame)                             |
| The Moon  | LCRS (Lunar Celestial Reference System)      | ILRS (International Lunar Reference System)?      | Short term: PA, ME<br>Long term: ILRF (International Lunar Reference Frame)? |

# LunaNet Perspectives on Reference Frames; Short term

- To focus on the **PNT** perspective, LunaNet recommends **PA** in the short term for the LunaNet radio navigation systems.
- Reason 1: ME is derived from PA. [2]

$$\begin{aligned}\mathbf{r}_{\text{MER,DE421}} = & \mathcal{R}_x(-0^\circ 2785) \mathcal{R}_y(-78^\circ 6944) \\ & \times \mathcal{R}_z(-67^\circ 8526) \mathbf{r}_{\text{PA,DE440}}.\end{aligned}$$


- Reason 2: PA is more easily applied to other celestial bodies.



# LunaNet Perspectives on Reference Frames ; Short term

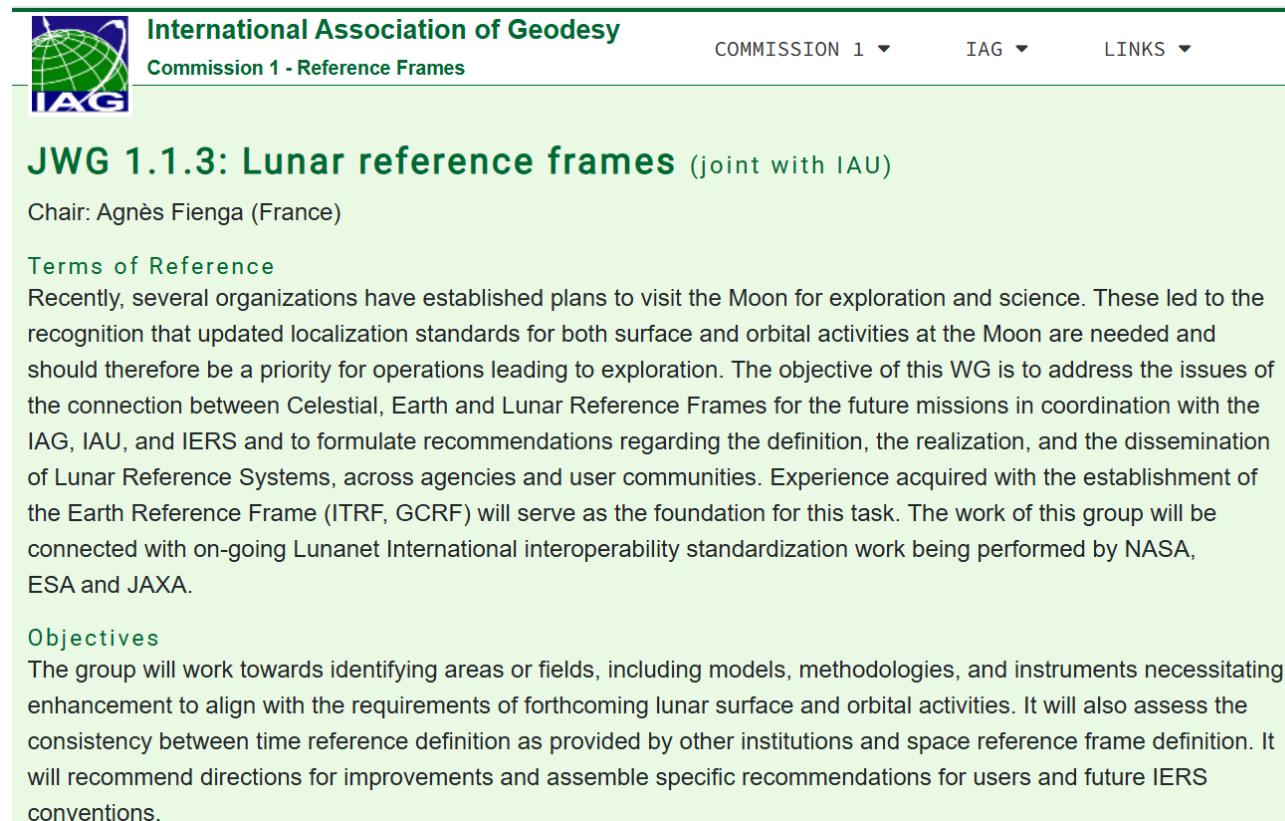
- In general, the most likely scenario is that users can employ either ME or PA with clarifying the frame in use.
- This is because ME has been widely employed in the past scientific studies and mappings and it is easy to ensure consistency and compatibility with historical data sets.
  - The IAU/IAG WG recommended ME for cartographic applications.
- The experience of SLIM's operation demonstrated combined use of PA and ME.

Map of the Moon according to the ME system using DE421 [5]



SLIM landed on the Moon in 2024 [6]




## Future Discussion

- Why do the current PA realizations show discrepancies at 1m-level on the Moon surface (DE vs INPOP)?
- How can we strengthen the international scientific collaboration?
- Would it be possible for the established working groups (e.g. IAG 1.1.3) to provide an endorsement for a given PA realization (as the IERS selects the official terrestrial reference frame among 3 available realizations)?

# Future Initiatives

International communities like IAG (International Association of Geodesy) and IAU (International Astronomical Union) are going to work on standardization.

WG for several topics initiated their activities in IAG.



The screenshot shows the IAG Commission 1 - Reference Frames website. The header includes the IAG logo, the text "International Association of Geodesy", "Commission 1 - Reference Frames", and navigation links for "COMMISSION 1", "IAG", and "LINKS". The main content area is titled "JWG 1.1.3: Lunar reference frames (joint with IAU)". It lists the Chair as Agnès Fienga (France) and provides a detailed "Terms of Reference" and "Objectives". The "Terms of Reference" section discusses the need for updated localization standards for Moon exploration and the connection between Celestial, Earth, and Lunar Reference Frames. The "Objectives" section states the group will work towards identifying areas for enhancement and consistency with other institutions.

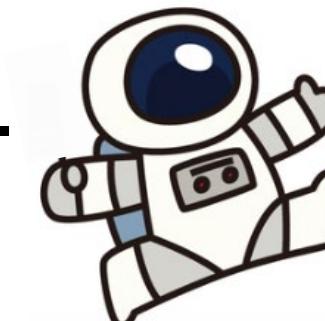
**JWG 1.1.3: Lunar reference frames (joint with IAU)**

Chair: Agnès Fienga (France)

**Terms of Reference**

Recently, several organizations have established plans to visit the Moon for exploration and science. These led to the recognition that updated localization standards for both surface and orbital activities at the Moon are needed and should therefore be a priority for operations leading to exploration. The objective of this WG is to address the issues of the connection between Celestial, Earth and Lunar Reference Frames for the future missions in coordination with the IAG, IAU, and IERS and to formulate recommendations regarding the definition, the realization, and the dissemination of Lunar Reference Systems, across agencies and user communities. Experience acquired with the establishment of the Earth Reference Frame (ITRF, GCRF) will serve as the foundation for this task. The work of this group will be connected with on-going Lunanet International interoperability standardization work being performed by NASA, ESA and JAXA.

**Objectives**


The group will work towards identifying areas or fields, including models, methodologies, and instruments necessitating enhancement to align with the requirements of forthcoming lunar surface and orbital activities. It will also assess the consistency between time reference definition as provided by other institutions and space reference frame definition. It will recommend directions for improvements and assemble specific recommendations for users and future IERS conventions.

1. PA and ME statement
2. Accuracy of the lunar reference frames
3. Interoperability / compatibility between Lunar and Earth frames

# Summary

- To ensure PNT on the Moon, developing standards is essential.
- Currently, several reference frames are considered.
- LunaNet is working on AD5 of LNIS and it will describe the interoperability of lunar reference frames that can be used in LunaNet.
- To focus on the PNT perspective, LunaNet recommends PA in the short term for radio navigation.
- In general, the most likely scenario is that users can employ either ME or PA with clarifying the frame in use.
- The long-term perspective of LunaNet is to adopt reference systems/frames generated with the whole scientific community under international organizations.

Thank you for your attention.



# References

- [1] Jürgen Müller, Thomas W. Murphy Jr., Ulrich Schreiber, Peter J. Shelus, Jean-Marie Torre, James G. Williams, Dale H. Boggs, Sébastien Bouquillon, Adrien Bourgoin, Franz Hofmann, 2019, "Lunar Laser Ranging: a tool for general relativity, lunar geophysics and Earth science"
- [2] Park, R.S; Folkner, W.M.; Williams, J.G.; Boggs, D.H., 2021, "The JPL Planetary and Lunar Ephemerides DE440 and DE441"
- [3] B. A. Archinal, C. H. Acton, M. F. A'Hearn, A. Conrad, G. J. Consolmagno, T. Duxbury, D. Hestroffer, J. L. Hilton, R. L. Kirk, S. A. Klioner, D. McCarthy, K. Meech, J. Oberst, J. Ping, P. K. Seidelmann, D. J. Tholen, P. C. Thomas, I. P. Williams, 2018, "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements: 2015"
- [4] Cheryl Gramling/NASA, Juan Crenshaw/NASA, Pietro Giordano/ESA, Richard Swinden/ESA, Erik Schoenemann/ESA, Sara Bruni/ESA. 2023, International Committee on GNSS, Madrid, "LunaNet: Interoperability for Lunar PNT"
- [5] <https://www.gsi.go.jp/chirijoho/chirijoho41003.html>
- [6] <https://jda.jaxa.jp/>
- [7] <https://com1.iag-aig.org/sub-commission-11>
- [8] <https://www.ac-illust.com/>

The background of the slide is a photograph of the solar system. On the left, the Moon is visible with its characteristic craters and maria. In the center, the Earth is shown in a blue and white color scheme, appearing as a sphere with a thin atmosphere. To the right, another celestial body, possibly Mars or a large asteroid, is visible with a reddish-brown hue. The background is a dark, star-filled space.

Back Ups