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Relativity and clocks: Connecting Theory with Practice 
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Time:  Newton and Einstein
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Space and time are absolute. 

There’s only spacetime. Every point in spacetime is an event. 

Space extends to infinity in all three directions, and time is the same at 
every point in space at any given instant. 

Length and time intervals are relative. Clocks tell the proper time. 

The rate of clocks is the same everywhere. 

The motion of the clock and gravity at the location of the clocks determine 
the rate of clocks.

Credit: WikipediaNewton’s notion of space and time matches Einstein’s only if the universe 
is empty and static.



Einstein’s theory of relativity
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General relativity (Einstein, 1915),  is based on three universality principles—collectively called the 
Einstein Equivalence Principle (EEP).
          
         1) The universality of free fall (UFF).  Also known as the Weak Equivalence Principle (WEP).
              Outcomes of  gravitational experiment are “same”  in free fall.  

         2) The universality of gravitational redshift (UGR). This is a consequence of Local Position 
Invariance (LPI).
               Outcomes of  non-gravitational experiments are “same”  everywhere,  anytime.  

         3)  A universality with respect to the state of observers moving with different velocities: 
                                      Local Lorentz invariance (LLI).
               All observers agree with each other if their relative motions are accounted for.
              
   Using the above postulates, how do you calculate the proper time elapsed by a moving clock?



Reference frames in Relativity: An example
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You may have heard that the universe is ~13.8 billion years old. 

 Who is the observer that determines this number? 
                
           An observer who is at rest  w.r.t. the Cosmic Microwave               
           Background Radiation (CMBR) frame. (Solar system  is                       
            moving ~370 km/s w.r.t. CMBR frame). 

†

† Could be a fraction of a ly or few million ly depending on whether you choose to accelerate or drift.

You need an appropriate coordinate system and a associated notion
 of time.  But actually this is not a complicated calculation!



Respecting Equivalence Principle and more…

1) Reference frames must be in free fall in the gravitational field of  the central 
body in which test  particles move. 

2)   External matter are to offer only tidal contributions in the second order. 

3)   First order tidal terms may be eliminated by translating the origin of  the     
       local coordinate frame. 

4)   Aim to pick a local coordinate frame in which the dynamics of test               
       bodies may presented in a simple form. 

5)  Metric whose components are the Newtonian potentials  is used to  relate 
      proper time  and coordinate time.    

†

Also see IAU resolutions 1991, 2000†



Clock comparison in GR: What are we measuring?
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Thought experiment:  A tale of two identical clocks at different locations (mind the cable!)

Proper frequency (and time)  depend  on the gravitational 
potential at the location of the clock and the motion of the clock in space. 

Since there are no long cables connecting every point in spacetime, we 
have to establish a coordinate time locally that is operationally 
convenient. 

Coordinate frequency is conserved.  That is because the separation 
between successive waveforms or pulses constructed with such signals 
stays fixed (in spacetime) if you don’t move the cable.

Send clock B signal through a cable that is not allowed to 
move during this experiment.

𝐴

𝐵

A very long cable

What is a clock? 
A device that locks to a frequency source and tracks it based on a 

definition. In the simplest form: Count cycles. When a fixed number is 
reached, increment the counter by a unit and repeat.



Clock comparison in GR: What are we measuring?
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Thought experiment:  A tale of two identical clocks at different locations (mind the cable!)

Pulses generated by clocks A and B using their proper 
frequencies can be compared at the location of clock A.

𝑑𝑡

𝑑𝜏

Sequence of events 

Sequence of events 
𝐴

𝐵

𝑓′￼

𝑓

(clock ticks faster)

(clock ticks slower)

𝐴

𝐵

There is a distinction between transporting 
the clock versus transporting the clock 
signal—relativistically speaking!



Clock comparison in GR: What are we measuring?
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Thought experiment:  A tale of two identical clocks at 
different locations (mind the cable!)

This is the rate offset that is of interest to us for the 
calculations.

A

B

f

f′￼

dτ
dt

− 1 =
f′￼− f

f

B

A
C

To match the measured frequency of clock C 
with clock B, apply positive correction to C

To match the measured frequency of clock C 
with clock A, apply negative correction to C

f′￼→ measured frequency
f → coordinate frequency
dτ → proper time interval
dt → realizes coordinate time interval
if B is moved to infinity (sufficiently far 
away  away from  any gravitational field)



Clock comparison in SR vs GR (just for appreciating & not understanding!)

fr
f0

=
(1 − v2/c2)1/2

(1 − ⃗v ⋅ ⃗r /c)
SR: two frames with relative velocity:

GR: three frames with test objects in Keplerian orbits (gravitational potential)

[Ashby, Allison & Patla 2025, in preparation]



Scope and Outline
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GPS satellite and ISS comparison

ISS, Credit:  NASA

Height above the earth = 411.863  km 
Rate =  /day  
                       
Speed = 27582.68  km/hr 
Rate                              /day  

ISS clocks will tick slower (compared to clocks 
on the geoid) by                     /day

+3.78 μs

= − 28.21 μs

∼ 24.4 μs

GPS III, Credit:  USAF

Height above the earth =20000 km 
Rate  =                      /day      

Speed = 14000 km/hr 
Rate    =                     /day  

GPS clocks will  tick faster (compared to clocks 
on the geoid)  by                       /day

+45.69 μs

−7.27 μs

∼ 38.4 μs



 Clocks on Mount Blue Sky, CO / Elevation 14,265ft ?

 Comparing with Gravity Probe A (GPA) [Vessot , R.F.C. et al. 1980, PRL]
Clock on Mt Evans, 202? GPA, 1976

Height difference (km) 2.75 10,000 

Experiment duration (hr) ~ 10 ~ 1

Oscillator uncertainty,
 

        (theory) 6 parts per million 25 parts per million

        (measured) ~12 parts per million? ~125 parts per million
11



• Using a freely falling coordinate frame centered at the Earth-Moon barycenter. 
• Assumes locations of ideal clocks on the surfaces of the Earth and Moon that makes it easier to 

compare their proper times. 
• Calculate proper time difference between clocks on the Moon and the Earth. 
• Compute proper time differences between clocks located at the Earth-Moon Lagrange points 

and on Earth.

Time on the moon

12



From postulation to calculation (just for appreciating & not understanding!)

determined by the proper time on an ideal clock at the center of
mass. Consider the transformation of coordinates (Ashby &
Bertotti 1986)
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Here Vcm and Acm represent the velocity and acceleration of the
center of mass.

The transformation coefficients are easily obtained from the
above coordinate transformations and are
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The metric component g00 in the center-of-mass frame, using
Equation (A7), is
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Expanding and keeping terms of order c−2,
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The last three terms in the last line of Equation (B6) add up to
twice the solar tidal potential; for expanding Φs about the
center-of-mass point and using
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where R is the vector from the center of the Sun to the center-
of-mass point. We denote the solar tidal potential by
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For the spatial component g11, we have
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where we have again expanded and kept only terms of order
c−2. Similarly,
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The metric component g12 is given by
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Keeping only terms of order c−2, this becomes
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Summarizing, the scalar invariant in the center-of-mass system
is
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The speed of light c is a defined quantity, which does not
change when transforming coordinates. However, because the
timescale changes, the length scale will also change. A quantity
such as Φe/c

2 has been carried forward from barycentric
coordinates, and one might question whether it should change
due to time and length scale changes. However, such quantities
are already of order c−2, and any such changes would be of
higher order and are therefore negligible.

Appendix C
Equations of Motion of the Earth and Moon

The equations of motion of the Earth and Moon should be
checked to verify that, neglecting solar tidal forces, they orbit
around each other in eccentric Keplerian ellipses. The equation
of motion of the Earth, using coordinate time x0 as the
independent variable, is
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Transformation of the metric tensor is accomplished with the
usual formula,
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where the summation convention for repeated indices applies.
Thus, for the time-time component of the metric tensor in the
freely falling frame,
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Expanding and keeping the terms of order c−2,
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Except for the Moon’s potential, the terms in the last line add
up to the solar tidal potential; for expanding Φe+Φs about the
origin and using
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where R is the vector from the Sun to the center of the Moon, re
is the vector from the Earth to the center of the Moon, and r is
the vector from the center of the Moon to the observation point
in local Fermi normal coordinates. Equation (A11) gives the
total tidal potential Φt/c

2 in the vicinity of the Moon due to the
Earth and the Sun. Thus,
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For the spatial component g11, we have
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where we have again expanded and kept only terms of order
c−2. Similarly,

( )= =g g g . A1422 33 11
The metric component g12 is given by
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Keeping only terms of order c−2, this becomes
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Summarizing, the scalar invariant with the origin at the Moon’s
center is
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The speed of light c is a defined quantity, which does not
change when transforming coordinates. However, because the
timescale changes, the length scale will also change. A quantity
such as Φm/c

2 has been carried forward from barycentric
coordinates, and one might question whether it should change
due to time and length scale changes. However, such quantities
are already of order c−2, and any such changes would be of
higher order and are therefore negligible. In these coordinates,
contributions to Christoffel symbols of the second kind due to
external bodies are zero since tidal potentials have been
neglected.

Appendix B
Construction of Freely Falling Center-of-mass Frame

We illustrate the method of construction of a freely falling,
locally inertial frame by constructing such a frame at the center
of mass of the Earth–Moon system, assuming this point
revolves around the Sun in an elliptical Keplerian orbit. We
keep contributions only to order c−2 and neglect tidal
contributions from solar system bodies other than the Earth,
Moon, and Sun. We also neglect precessions.
The metric in isotropic barycentric coordinates including

only the Earth, Moon, and Sun is
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where the gravitational potentials of the Earth, Moon, and Sun
are denoted by subscripts e, m, and s, respectively. We use
uppercase letters to denote quantities in barycentric coordinates
and lowercase letters for quantities in the freely falling center of
the mass frame. We are interested in a test particle at the Earth–
Moon center of mass. The local time coordinate x0 is
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Transformation of the metric tensor is accomplished with the
usual formula,
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where the summation convention for repeated indices applies.
Thus, for the time-time component of the metric tensor in the
freely falling frame,
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Expanding and keeping the terms of order c−2,
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Except for the Moon’s potential, the terms in the last line add
up to the solar tidal potential; for expanding Φe+Φs about the
origin and using
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where R is the vector from the Sun to the center of the Moon, re
is the vector from the Earth to the center of the Moon, and r is
the vector from the center of the Moon to the observation point
in local Fermi normal coordinates. Equation (A11) gives the
total tidal potential Φt/c

2 in the vicinity of the Moon due to the
Earth and the Sun. Thus,
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For the spatial component g11, we have

⎜ ⎟ ⎜ ⎟

⎜ ⎟ ⎜ ⎟

⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠⎛⎝ ⎞⎠ ⎛⎝ ⎞⎠( ) ( )

( )

å=
¶
¶

+
¶
¶

= - +
¶
¶

= -
F

-
F

=

=

g
X
x

G
X
x

G

V m
c

X
x

G

c c

1

1
2 2

, A13

j

j j

jj

m t

11

0

1

2

00
1

3

1

2

1 2 1

1

2

11

2 2

where we have again expanded and kept only terms of order
c−2. Similarly,
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The metric component g12 is given by
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Keeping only terms of order c−2, this becomes
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Summarizing, the scalar invariant with the origin at the Moon’s
center is
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The speed of light c is a defined quantity, which does not
change when transforming coordinates. However, because the
timescale changes, the length scale will also change. A quantity
such as Φm/c

2 has been carried forward from barycentric
coordinates, and one might question whether it should change
due to time and length scale changes. However, such quantities
are already of order c−2, and any such changes would be of
higher order and are therefore negligible. In these coordinates,
contributions to Christoffel symbols of the second kind due to
external bodies are zero since tidal potentials have been
neglected.

Appendix B
Construction of Freely Falling Center-of-mass Frame

We illustrate the method of construction of a freely falling,
locally inertial frame by constructing such a frame at the center
of mass of the Earth–Moon system, assuming this point
revolves around the Sun in an elliptical Keplerian orbit. We
keep contributions only to order c−2 and neglect tidal
contributions from solar system bodies other than the Earth,
Moon, and Sun. We also neglect precessions.
The metric in isotropic barycentric coordinates including

only the Earth, Moon, and Sun is
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where the gravitational potentials of the Earth, Moon, and Sun
are denoted by subscripts e, m, and s, respectively. We use
uppercase letters to denote quantities in barycentric coordinates
and lowercase letters for quantities in the freely falling center of
the mass frame. We are interested in a test particle at the Earth–
Moon center of mass. The local time coordinate x0 is
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Transformation of the metric tensor is accomplished with the
usual formula,
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Thus, for the time-time component of the metric tensor in the
freely falling frame,
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Expanding and keeping the terms of order c−2,
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Except for the Moon’s potential, the terms in the last line add
up to the solar tidal potential; for expanding Φe+Φs about the
origin and using
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where R is the vector from the Sun to the center of the Moon, re
is the vector from the Earth to the center of the Moon, and r is
the vector from the center of the Moon to the observation point
in local Fermi normal coordinates. Equation (A11) gives the
total tidal potential Φt/c

2 in the vicinity of the Moon due to the
Earth and the Sun. Thus,
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For the spatial component g11, we have
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where we have again expanded and kept only terms of order
c−2. Similarly,
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Keeping only terms of order c−2, this becomes
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Similarly,
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Summarizing, the scalar invariant with the origin at the Moon’s
center is
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The speed of light c is a defined quantity, which does not
change when transforming coordinates. However, because the
timescale changes, the length scale will also change. A quantity
such as Φm/c

2 has been carried forward from barycentric
coordinates, and one might question whether it should change
due to time and length scale changes. However, such quantities
are already of order c−2, and any such changes would be of
higher order and are therefore negligible. In these coordinates,
contributions to Christoffel symbols of the second kind due to
external bodies are zero since tidal potentials have been
neglected.

Appendix B
Construction of Freely Falling Center-of-mass Frame

We illustrate the method of construction of a freely falling,
locally inertial frame by constructing such a frame at the center
of mass of the Earth–Moon system, assuming this point
revolves around the Sun in an elliptical Keplerian orbit. We
keep contributions only to order c−2 and neglect tidal
contributions from solar system bodies other than the Earth,
Moon, and Sun. We also neglect precessions.
The metric in isotropic barycentric coordinates including

only the Earth, Moon, and Sun is
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where the gravitational potentials of the Earth, Moon, and Sun
are denoted by subscripts e, m, and s, respectively. We use
uppercase letters to denote quantities in barycentric coordinates
and lowercase letters for quantities in the freely falling center of
the mass frame. We are interested in a test particle at the Earth–
Moon center of mass. The local time coordinate x0 is
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dXμSolar system barycentric coordinates

dxμEarth-Moon CM  coordinates

Taylor series expansion

Parallel transport equation



14

Time on the way to the Moon (or anywhere)

X → BCRS x → GCRS
A → SpacecraftE → Earth

V → Sum of Newtonian potentials of solar system bodies excluding earth
Newtonian potential of earthUE →
Spacecraft velocity in GCRSvA →

XE → CM coordinates of the earth 

Proper time

Coordinate  time

For estimating rates, you only need components of position and velocity vector of the spacecraft.

Solar system barycenter
Earth center
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Measurements/data  from:  GPS, WAAS,  Accelerometers, crosslink, XNAV, 
terrain maps, ranging.  For example, NASA’s TDRS in use for more than 40 years.

Geopotential 
Solar system bodies 
Acceleration noise 
Atmosphere 
Terrestrial dynamics

Extended Kalman Filter (EKF) 
Noise models 

Data processing  
Analysis

Models Space segment

Ground segment

x
y
z
vx
vy
vz

dτA

dTT
− 1

Time on the way to the Moon (or anywhere)
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Realizing Lunar Coordinated Time (LTC)

What should be the time standard for cislunar space and for the moon? 
Is there any benefit to realizing TL on the lunar surface? 
Factors to consider include:  
                        a)  need for independence from (but traceable to) TT ? 
                        b)  how to disseminate            What accuracy? 
                        c)  what is the optimal way to design to scale up and extend it beyond moon?

δTL ?

TT

TCG

TL

TCL

TL ↔ TT
TCL ↔ TCG

TL(or TCL) − TT = δTL = linear term + periodic terms

For GNSS, a “fixed” term is corrected with a “factory offset.” 
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Realizing Lunar Coordinated Time (LTC)

Filter / Algorithm

Steered clock

LTC, UTC-LTC

LTC

UTC

How to disseminate lunar time offsets and compare with UTC ? 

TL − TT, TCL − TT, or a scale factor† with a defined value plus corrections?

† See Eq . (10) in Ashby & Patla, 2024; Eq . (26) in Kopeikin & Kaplan, 2024
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Relativistic effects and reference frames

Mean Earth (ME) frame for the moon is currently the standard for lunar mapping.

BCRS, TCB

LTRF, TL

ITRF, TTGCRS, TCG

LCRS, TCL

Inertial Non inertial

ME

Topographic

†

†

X-axis pointing toward the center of the Earth 

Coordinate system 

Reference time 

Principal Axis (PA)  frame: coordinate axes aligned with principal axes (direction along which moment of 
inertia is extremal). May be useful depending on the scale and scope of activities planned in circular space.
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Relativistic effects and reference frames

Principal Axis (PA) is useful for modeling of  the lunar gravity field, precession, nutation. 
PA frames are also ideal for optimizing spacecraft dynamics, including attitude control, etc

⃗X PA = R(α) × R(β) × R(γ) × ⃗X ME

⃗X LCRF = P(t) × N(t) × R(t) × ⃗X PA

Rotation: Euler angles.

Precession, nutation, rotation angle for the Moon.

There is a need for better estimation of the gravitational parameters and gravity field for the 
moon. The position estimate residuals can a high as a few hundred meters at certain 
locations on the lunar surface.
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Concluding remarks
The time is right for high performance clock comparisons with multiple experiments planned 
both on the ground and in space. 

This April, after 25 years of planning, ACES is scheduled for launch. An ensemble of space 
qualified H-maser and Cs tube clock on the ISS on a 30-month clock comparison mission. 

Understanding relativistic corrections play a vital role in geodesy with clocks,  improving 
gravity field models for the Moon, remote clock comparisons, establishing communication 
links and deploying relay satellites, design and development of PNT infrastructure, testing 
fundamental physics —to name a few applications. 

In the future, gravitational time delays in signal propagation, higher order multipole moments 
coupling with tidal potentials, contributions from Coriolis-like effects may have to be 
considered—depending on specific applications or use cases. 

Please stay with us for an in-depth discussion on timing to follow this afternoon. 
 


